Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 8(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668723

RESUMO

This study is dedicated to the rapid removal of protein aggregates and viruses from plasma-derived human serum albumin (HSA) product to reduce the risk of viral contamination and increase biosafety. A two-step filtration approach was implemented to first remove HSA aggregates and then achieve high model virus clearance using a nanocellulose-based filter paper of different thicknesses, i.e., 11 µm (prefilter) and 22 µm (virus filter) at pH 7.4 and room temperature. The pore size distribution of these filters was characterized by nitrogen gas sorption analysis. Dynamic light scattering (DLS) and size-exclusion high performance liquid chromatography (SE-HPLC) were performed to analyze the presence of HSA aggregates in process intermediates. The virus filter showed high clearance of a small-size model virus, i.e., log10 reduction value (LRV) > 5, when operated at 3 and 5 bar, but a distinct decrease in LRV was detected at 1 bar, i.e., LRV 2.65-3.75. The throughput of HSA was also dependent on applied transmembrane pressure as was seen by Vmax values of 110 ± 2.5 L m-2 and 63.6 ± 5.8 L m-2 at 3 bar and 5 bar, respectively. Protein loss was low, i.e., recovery > 90%. A distribution of pore sizes between 40 nm and 60 nm, which was present in the prefilter and absent in the virus filter, played a crucial part in removing the HSA aggregates and minimizing the risk of virus filter fouling. The presented results enable the application of virus removal nanofiltration of HSA in bioprocessing as an alternative to virus inactivation methods based, e.g., on heat treatment.

2.
Membranes (Basel) ; 9(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577520

RESUMO

Pore-size distribution (PSD) is the most critical parameter for size-exclusion virus removal filters. Yet, different dry- and wet-state porometry methods yield different pore-size values. The goal of this work is to conduct comparative analysis of nitrogen gas sorption (NGSP), liquid-liquid and cryoporometry with differential scanning calorimetry (CP-DSC) methods with respect to characterization of regular and cross-linked virus removal filter paper based on cellulose nanofibers, i.e. the mille-feuille filter. The filters were further characterized with atomic force and scanning electron microscopy. Finally, the removal of the worst-case model virus, i.e. minute virus of mice (MVM; 20 nm, nonenveloped parvovirus) was evaluated. The results revealed that there is no difference of the obtained PSDs between the wet methods, i.e. DSC and liquid-liquid porometry (LLP), as well as no difference between the regular and cross-linked filters regardless of method. MVM filtration at different trans membrane pressure (TMP) revealed strong dependence of the virus removal capability on applied pressure. It was further observed that cross-linking filters showed enhanced virus removal, especially at lower TMP. In all, the results of this study highlight the complex nature of virus capture in size-exclusion filters.

3.
Membranes (Basel) ; 8(4)2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30301138

RESUMO

Pressure-dependent breakthrough of nanobioparticles in filtration was observed and it was related to depend on both convective forces due to flow and diffusion as a result of Brownian motion. The aim of this work was to investigate the significance of Brownian motion on nanoparticle and virus capture in a nanocellulose-based virus removal filter paper through theoretical modeling and filtration experiments. Local flow velocities in the pores of the filter paper were modeled through two different approaches (i.e., with the Hagen⁻Poiseuille equation) and by evaluating the superficial linear flow velocity through the filter. Simulations by solving the Langevin equation for 5 nm gold particles and 28 nm ΦX174 bacteriophages showed that hydrodynamic constraint is favored for larger particles. Filtration of gold nanoparticles showed no difference in retention for the investigated fluxes, as predicted by the modeling of local flow velocities. Filtration of ΦX174 bacteriophages exhibited a higher retention at higher filtration pressure, which was predicted to some extent by the Hagen⁻Poiseuille equation but not by evaluation of the superficial linear velocity. In all, the hydrodynamic theory was shown able to explain some of the observations during filtration.

4.
Langmuir ; 33(19): 4729-4736, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28441870

RESUMO

Protein-based pharmaceutics are widely explored for healthcare applications, and 6 out of 10 best-selling drugs today are biologicals. The goal of this work was to evaluate the protein nanocellulose interactions in paper filter for advanced separation applications such as virus removal filtration and bioprocessing. The protein recovery was measured for bovine serum albumin (BSA), γ-globulin, and lysozyme using biuret total protein reagent and polyacrylamide gel electrophoresis (PAGE), and the throughput was characterized in terms of flux values from fixed volume filtrations at various protein concentrations and under worst-case experimental conditions. The affinity of cellulose to bind various proteins, such as BSA, lysozyme, γ-globulin, and human IgG was quantified using a quartz crystal microbalance (QCMB) by developing a new method of fixing the cellulose fibers to the electrode surface without cellulose dissolution-precipitation. It was shown that the mille-feuille filter exhibits high protein recovery, that is, ∼99% for both BSA and lysozyme. However, γ-globulin does not pass through the membrane due to its large size (i.e., >180 kDa). The PAGE data show no substantial change in the amount of dimers and trimers before and after filtration. QCMB analysis suggests a low affinity between the nanocellulose surface and proteins. The nanocellulose-based filter exhibits desirable inertness as a filtering material intended for protein purification.


Assuntos
Nanoestruturas , Animais , Celulose , Filtração , Muramidase , Técnicas de Microbalança de Cristal de Quartzo , Soroalbumina Bovina
5.
Molecules ; 22(12)2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29292731

RESUMO

Softwood sulfite bleached cellulose pulp was oxidized with Oxone® and cellulose nanofibers (CNF) were produced after mechanical treatment with a high-shear homogenizer. UV-vis transmittance of dispersions of oxidized cellulose with different degrees of mechanical treatment was recorded. Scanning electron microscopy (SEM) micrographs and atomic force microscopy (AFM) images of samples prepared from the translucent dispersions showed individualized cellulose nanofibers with a width of about 10 nm and lengths of a few hundred nm. All results demonstrated that more translucent CNF dispersions could be obtained after the pretreatment of cellulose pulp by Oxone® oxidation compared with the samples produced without pretreatment. The intrinsic viscosity of the cellulose decreased after oxidation and was further reduced after mechanical treatment. Almost translucent cellulose films were prepared from the dispersions of individualized cellulose nanofibers. The procedure described herein constitutes a green, novel, and efficient route to access CNF.


Assuntos
Celulose/química , Nanofibras/química , Ácidos Sulfúricos/química , Temperatura Alta , Fenômenos Mecânicos , Oxirredução , Tamanho da Partícula , Solubilidade , Propriedades de Superfície , Viscosidade , Água
6.
ACS Appl Mater Interfaces ; 8(22): 13759-67, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27144657

RESUMO

The goal of this work is to demonstrate how the pore-size distribution of the nanocellulose-based virus-retentive filter can be tailored. The filter paper was produced using cellulose nanofibers derived from Cladophora sp. green algae using the hot-press drying at varying drying temperatures. The produced filters were characterized using scanning electron microscopy, atomic force microscopy, and N2 gas sorption analysis. Further, hydraulic permeability and retention efficiency toward surrogate 20 nm model particles (fluorescent carboxylate-modified polystyrene spheres) were assessed. It was shown that by controlling the rate of water evaporation during hot-press drying the pore-size distribution can be precisely tailored in the region between 10 and 25 nm. The mechanism of pore formation and critical parameters are discussed in detail. The results are highly valuable for development of advanced separation media, especially for virus-retentive size-exclusion filtration.


Assuntos
Celulose/química , Filtração/métodos , Nanofibras/química , Vírus/isolamento & purificação , Celulose/ultraestrutura , Filtração/instrumentação , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Permeabilidade
7.
Biomacromolecules ; 17(3): 1224-33, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26886265

RESUMO

This work presents an insight into the relationship between cell response and physicochemical properties of Cladophora cellulose (CC) by investigating the effect of CC functional group density on the response of model cell lines. CC was carboxylated by electrochemical TEMPO-mediated oxidation. By varying the amount of charge passed through the electrolysis setup, CC materials with different degrees of oxidation were obtained. The effect of carboxyl group density on the material's physicochemical properties was investigated together with the response of human dermal fibroblasts (hDF) and human osteoblastic cells (Saos-2) to the carboxylated CC films. The introduction of carboxyl groups resulted in CC films with decreased specific surface area and smaller total pore volume compared with the unmodified CC (u-CC). While u-CC films presented a porous network of randomly oriented fibers, a compact and aligned fiber pattern was depicted for the carboxylated-CC films. The decrease in surface area and total pore volume, and the orientation and aggregation of the fibers tended to augment parallel to the increase in the carboxyl group density. hDF and Saos-2 cells presented poor cell adhesion and spreading on u-CC, which gradually increased for the carboxylated CC as the degree of oxidation increased. It was found that a threshold value in carboxyl group density needs be reached to obtain a carboxylated-CC film with cytocompatibility comparable to commercial tissue culture material. Hence, this study demonstrates that a normally bioinert nanomaterial can be rendered bioactive by carefully tuning the density of charged groups on the material surface, a finding that not only may contribute to the fundamental understanding of biointerface phenomena, but also to the development of bioinert/bioactive materials.


Assuntos
Adesão Celular , Celulose Oxidada/química , Nanofibras/química , Linhagem Celular , Celulose Oxidada/farmacologia , Fibroblastos/efeitos dos fármacos , Humanos , Membranas Artificiais , Osteoblastos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...